Salmonella DNA adenine methylase mutants confer cross-protective immunity.

نویسندگان

  • D M Heithoff
  • E Y Enioutina
  • R A Daynes
  • R L Sinsheimer
  • D A Low
  • M J Mahan
چکیده

Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam(-) vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens.

Salmonella DNA adenine methylase (Dam) mutants that lack or overproduce Dam are highly attenuated for virulence in mice and confer protection against murine typhoid fever. To determine whether vaccines based on Dam are efficacious in poultry, a Salmonella Dam(-) vaccine was evaluated in the protection of chicken broilers against oral challenge with homologous and heterologous Salmonella serovar...

متن کامل

Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity.

Immunity conferred by conventional vaccines is restricted to a narrow range of closely related strains, highlighting the unmet medical need for the development of vaccines that elicit protection against multiple pathogenic serotypes. Here we show that a Salmonella bivalent vaccine comprised of strains that lack and overproduce DNA adenine methylase (Dam) conferred cross-protective immunity to s...

متن کامل

Comparison of tissue-selective proinflammatory gene induction in mice infected with wild-type, DNA adenine methylase-deficient, and flagellin-deficient Salmonella enterica.

Mutants of Salmonella enterica serovar Typhimurium deficient in DNA adenine methylase (Dam) are attenuated for virulence in mice and confer heightened immunity in vaccinated animals. In contrast, infection of mice with wild-type (WT) strains or flagellin-deficient mutants of Salmonella causes typhoid fever. Here we examined the bacterial load and spatiotemporal kinetics of expression of several...

متن کامل

LcrV synthesis is altered by DNA adenine methylase overproduction in Yersinia pseudotuberculosis and is required to confer immunity in vaccinated hosts.

Yersinia pseudotuberculosis mutants that overproduce the DNA adenine methylase (DamOP Yersinia) are attenuated, confer robust protective immune responses, and synthesize or secrete several Yersinia outer proteins (Yops) under conditions that are nonpermissive for synthesis and secretion in wild-type strains. To understand the molecular basis of immunity elicited by DamOP Yersinia, we investigat...

متن کامل

DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae.

Salmonella strains that lack or overproduce DNA adenine methylase (Dam) elicit a protective immune response to different Salmonella species. To generate vaccines against other bacterial pathogens, the dam genes of Yersinia pseudotuberculosis and Vibrio cholerae were disrupted but found to be essential for viability. Overproduction of Dam significantly attenuated the virulence of these two patho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 2001